5016

BOARD DIPLOMA EXAMINATION, (C-16)

MARCH / APRIL - 2019

DCE - FIRST YEAR EXAMINATION ENGINEERING MECHANICS

Time: 3 Hours] [Total Marks: 80

PART - A

 $2 \times 15 = 30$

Instructions:

- (1) Answer any 15 questions.
- (2) Each question carries 2 marks.
- (3) Answer should be brief and straight to the point and shall not exceed five simple sentences.
- 1 Define Engineering Mechanics.
- 2 State the Branches of Engineering Mechanics.
- 3 Define the term "Resultant".
- 4 State the law of parallelogram of forces and give expressions for magnitude and direction of the Resultant.
- 5 List various types of beams according to type of supports.
- 6 Calculate the forces in the ropes AB and AC of the arrangement as shown below.

5016] 1 [Contd...

- 7 Distinguish between centroid and centre of gravity.
- 8 find the centroid of a channel section given below.

9 Locate the position of centroid for a semi circle as shown below with diameter, d.

- 10 State the parallel axis theorem with usual notations.
- 11 Define radius of gyration and give expression for it with usual notations.
- 12 Calculate least radius of gyration for a rectangle with dimensions of $230 \text{mm} \times 500 \text{mm}$.
- The Moment of inertia of a triangle about its base is 150×10^4 mm⁴, Find the M.I. of this triangle about its centroidal X-X axis.

5016] 2 [Contd...

- 14 A hollow shaft has an outside diameter 200mm and thickness 15mm.

 Determine the Polar moment of inertia.
- 15 Define the term "Strain Energy".
- 16 State "Hooke's law".
- 17 State the relationship among the Elastic constants.
- 18 Draw the stress strain diagram for a ductile material subjected to a tensile force and indicate any two salient points.
- What pull elongates 5mm in a length of 2.0m of square rod of 25mm side, if its E=210kN/mm².
- 20 A rod is 3m long at 30°C. Find the expansion of the rod, when the temperature is raised to 100°C. Take $E=2\times10^5 N/mm^2$, $\alpha=12\times10^{-6}$ per °C.

PART - B $10 \times 5 = 50$

Instructions:

- (1) Answer any **FIVE** questions.
- (2) Each question carries **TEN** marks.
- (3) Answer should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **21** (a) Define "Equilibrium".

2

(b) Calculate the Forces in the cables AB, BC, BD and DE 8 of the system as shown in figure below.

5016] 3 [Contd...

- 22 (a) Define "Couple" and state any four properties of couple. 5
 - (b) Four forces acting on a member as shown in Figure. 5
 Find the values of F1 and F2, so that the member will be in equilibrium.

23 (a) Locate the centroid for the figure shown below. 5

5016] 4 [Contd...

(b) Determine the position of centroid of a Dam section shown in Figure. 5

- 24 (a) Write the formula for the M.I. of a triangle about its base.
 - (b) Determine the moment of Inertia of the cross section of **8** given unsymmetrical channel section about its centroidal X-X and Y-Y axes.

5016] 5 [Contd...

[Contd...

25	(a)	State "Perpendicular axis theorem".	2
	(b)	A Built -up section consists of two channels ISLC 300 placed back to back at 80mm clear distance with two cover plates 320mm × 20mm. Determine the moments of inertia of the section about Horizontal and Vertical centroidal axes. For a single Channel, A=4210mm ² , Ixx=6.05×10 ⁷ mm ⁴ , Iyy=3.46×10 ⁶ mm ⁴ , Cyy=25.5mm.	8
26	(a)	Define (i) Poisson's ratio (ii) Modulus of Rigidity	2
	(b)	A circular R.C.C. Column 300mm in diameter is reinforced with 6 numbers of 25mm diameter Steel bars. Permissible compressive stress in concrete is 7 N/mm ² . Find the load carrying capacity of the column. Given modular ratio, m=13.33	8
27	(a)	Define "Bulk modulus"	2
	(b)	A mild steel bar 20mm in diameter and 250mm long is encased in a brass tube whose external dia is 32mm and internal dia is 22mm. This composite bar is heated through 90°C. Calculate the stress induced in each material. Take α for steel =12×10 ⁻⁶ per°C, α for brass = 19×10 ⁻⁶ per°C, E for steel = 210kN/mm ² and E for brass =100kN/mm ² .	8

6

5016]

- 28 (a) Define (i) Ductility, (ii) Fatigue (iii) Creep 3
 - (b) A bar 25mm in diameter and 500mm long is subjected to an axial pull of 20kN. The elongation in length and contraction in lateral dimension are found to be 0.5mm and 6×10^{-3} mm respectively. Determine the poisson's ratio, Youngs Modulus, Modulus of Rigidity and Bulk Modulus.

5016] 7 #