

C16-EE-103

5149

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL—2018 DEEE—FIRST SEMESTER EXAMINATION

ENGINEERING PHYSICS-I

Time : 3 hours]

[Total Marks : 80

PART—A

2×15=30

Instructions : (1) Answer any **fifteen** questions.

- (2) Each question carries **two** marks.
- (3) Answers should be brief and straight to the point.
- 1. Define fundamental physical quantity. Give two examples.
- 2. Write any two limitations of dimensional analysis.
- 3. State any two advantages of SI.
- 4. Define dimensionless physical quantities. Give two examples.
- 5. State photoelectric effect.
- **6.** Define critical angle in refraction of light.
- 7. Write any two advantages of optical fiber.

*

8. Define superconductivity.

/5149

[Contd...

www.manaresults.co.in

1

- 9. State Boyle's law.
- **10.** Define ideal gas.
- 11. State first law of thermodynamics.
- **12.** Define absolute zero temperature.
- 13. Define scalar. Give any two examples.
- 14. State polygon law.
- **15.** If $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$, then find unit vector of \vec{A} .
- **16.** Define cross product of two vectors.
- **17.** Write any two factors which influence acceleration due to gravity.
- **18.** Define projectile.
- **19.** A body projected vertically upwards with a velocity of 19.6 m/s. Find maximum height reached. ($g = 9.8 \text{ m/s}^2$)
- **20.** Write the formulae for (*a*) time of ascent and (*b*) maximum height reached by a projectile projected with velocity u at an angle with horizontal.

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **21.** (a) Explain Einstein photoelectric equation. 6

2

(b) Write any four applications of photocell. 4

/5149

[Contd...

www.manaresults.co.in

22.	(a)	* Define optical fiber. Explain different types of optical fiber.	6
	(b)	List any four applications of superconductors.	4
23.	(a)	Derive ideal gas equation.	7
	(b)	One litre of air is heated from 27 °C to 177 °C at constant pressure. Find its volume.	3
24.	(a)	Distinguish isothermal and adiabatic processes.	6
	(b)	Find out the value of R.	4
25.	(a)	Derive the equations for magnitude and direction of the resultant vector from parallelogram law of vectors.	7
	(b)	Two forces 3 N and 5 N are acting at a point by making angle 60° to each other. Find the magnitude of the resultant vector.	3
26.	(a)	Define scalar product and write any five properties of scalar product.	7
	(b)	A force of $6\hat{i}$ $12\hat{j}$ $8k$ products a displacement of $2i$ $8j$ $2k$. Find the work done.	3
27.	(a)	Derive the expression for height of a tower when a body projected upwards from top of the tower.	6
	(b)	A body is projected up from the top of a tower with a velocity of 10 m/s . It reaches the ground after 5 seconds. Find the height of the tower.	4
28.	(a)	Derive the formulae for projectile in oblique projection (a) time of flight and (b) range.	+3
	(b)	If the range of projectile is twice that of maximum height, find the angle of projection.	4

/5149

*

3

*

AA8(T)—PDF

www.manaresults.co.in