

C16-M-103

5174

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL—2018 DME—FIRST SEMESTER EXAMINATION

ENGINEERING PHYSICS

Time: 3 hours [Total Marks: 80

PART—A

 $2 \times 15 = 30$

Instructions: (1) Answer any **fifteen** questions.

- (2) Each question carries **two** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Write any four advantages of SI system.
- 2. State any two applications of dimensional analysis.
- **3.** Write any two limitations of dimensional analysis.
- **4.** Write the dimensional formulae of (a) power and (b) frequency.
- **5.** Define scalar and vector quantities.
- **6.** Define unit vector.
- **7.** State triangle law of vectors.
- **8.** If a force of 50 N acting on a body at an angle of 30° with the horizontal, find its horizontal component of force.
- **9.** List out any two applications of photoelectric effect.

/5174 * 1 [Contd...

- 10. Write any two applications of optical fiber.11. What is a superconductor?
- 12. State any two applications of superconductor.
- 13. State Boyle's law.
- 14. Define first and second laws of thermodynamics.
- **15.** Why is C_p C_v ?
- 16. What is absolute zero temperature?
- 17. Define time of ascent and time of descent.
- **18.** A body is allowed to fall freely from a height of 4.9 m. Find the time taken by the body to reach the ground.
- 19. What is a projectile? Give an example.
- 20. Define horizontal range of a projectile.

PART—B 10×5=50

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **21.** What is photoelectric effect? Explain the working of a photoelectric cell. State any four laws of photoelectric emission. 2+4+4
- **22.** What is optical fiber? Explain the principle and working of optical fiber. Name different types of optical fibres. 2+6+2

/5174 * 2 [Contd...

23.	Dei	rive $PV = nRT$. Calculate the value of universal gas constant.	+3
24.	(a)	Define C_p and C_v . Prove that C_p C_v R .	+5
	(b)	The density of a gas at STP is 1.3 kg/m^3 . What is the density of gas at 27 °C and 86 cm if Hg pressure?	3
25.	(a)	Derive the expression for magnitude and direction of the resultant.	7
	(b)	The resultant of two equal and perpendicular forces is 1414N. Find the magnitude of each force.	3
26.	(a)	Define scalar and vector products of two vectors.	+2
	(b)	If \vec{A} $2\hat{i}$ $3\hat{j}$ $7\hat{k}$ and \vec{B} $2\hat{i}$ $3\hat{j}$ $5\hat{k}$, find the magnitude of \vec{A} \vec{B} and \vec{A} \vec{B} .	+4
27.	(a)	Show that the path of an oblique projectile is a parabola.	6
	(b)	A stone projected upwards with a velocity 9.8 m/s from the top of a tower reaches the grounds in 4 seconds. Find the height of the tower.	4
28.	(a)	Derive the expressions for the maximum height and horizontal range of a projectile.	+3
	(b)	An aeroplane flying horizontally with a speed of 360 km/hr releases a bomb at a height of 490 m from the ground, when and where the will bomb strike the ground?	4

AA8(T)—PDF

3

/5174