с16-м-303

5489

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL-2018
 DME-THIRD SEMESTER EXAMINATION

BASIC THERMODYNAMICS

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed three simple sentences.

1. State the first law of thermodynamics and give mathematical expression.
2. Distinguish between heat and work.
3. Derive the relation between specific heat and gas constant.
4. Represent the following processes on $P-V$ diagram :
(a) Adiabatic process
(b) Isothermal process
5. Write a short note on throttling process.
6. Define lower calorific value and higher calorific value.
7. What are the limitations of Carnot cycle?
8. An engine working on Otto cycle has a compression ratio of 6. Find the ideal efficiency of the cycle. Take $y=1.4$.
9. Compare between two-stroke engine and four-stroke engine. Write any three points.
10. List different types of governing of IC engines.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. In a steady flow system, a fluid flows at the rate of $4 \mathrm{~kg} / \mathrm{s}$. It enters at a velocity of $300 \mathrm{~m} / \mathrm{s}$ and has enthalpy of $2330 \mathrm{~kJ} / \mathrm{kg}$ at inlet. It leaves the system at a velocity of $150 \mathrm{~m} / \mathrm{s}$ and its enthalpy at outlet is $1656 \mathrm{~kJ} / \mathrm{kg}$. During its passage through the system, fluid has a loss of heat transfer by $30 \mathrm{~kJ} / \mathrm{kg}$ to the surroundings. Determine the power of the system in kW . Neglect any changes in the potential energy.
12. (a) Carbon dioxide (molecular weight $=44$) occupies a tank at $100{ }^{\circ} \mathrm{C}$. If the volume of the tank is $0.5 \mathrm{~m}^{3}$ and the pressure is 500 kPa , determine the mass of the gas in the tank.
(b) Find higher and lower calorific values of given coal having $C=90 \%, \mathrm{H}_{2}=5 \%, S=1 \%$ remaining is ash, by mass.
13. (a) Represent the following processes on T-s diagram :
(i) Constant pressure
(ii) Constant volume
(iii) Isothermal process
(b) During a constant pressure process, the internal energy of one kg system increases by 28.5 kJ and enthalpy increases by 44.3 kJ . The pressure is $620 \mathrm{kN} / \mathrm{m}^{2}$:
(i) What is the work which accompanies this process?
(ii) If the initial volume is $0.793 \mathrm{~m}^{3}$, what is the final volume?
14. A quantity of air has initial pressure, volume and temperature of $3 \mathrm{Mpa}, 4$ litres and $250{ }^{\circ} \mathrm{C}$ respectively. It is expanded to a pressure of 0.4 Mpa accordingly to the law $P V^{125}=$ constant. Determine the change in entropy.
Take $C_{p}=1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $C_{v}=0.715 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
15. Explain the working and construction of Bomb calorimeter to find HCV with a neat sketch.
16. An air standard Otto cycle with compression ratio 8, compresses air at 1 bar and 303 K . Then maximum cycle temperature is 1273 K . Determine (a) heat supplies per kg of air, (b) net work done and (c) cycle efficiency.
Assume $y=1.4, C_{v}=0.718 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
17. Explain the working of two-stroke SI engine.
18. The following observations were made during a trial on two-stroke engine for half an hour when it was running at 250 RPM :

Stroke length $=500 \mathrm{~mm}$
Diameter of bore $=200 \mathrm{~mm}$
Mean effective pressure $=6$ bar
Reading of spring balance $=1390 \mathrm{~N}$ and 90 N
Mean circumference of brake drum $=3600 \mathrm{~mm}$
Fuel consumed $=5.4 \mathrm{~kg}$
Calorific value of fuel $=44000 \mathrm{~kJ} / \mathrm{kg}$
Determine mechanical and thermal efficiencies of the engine.

